Search for B⁺ → I⁺ X with hadronic tagging method at Belle Experiment

Chanseok Park

Yonsei University

cspark@yhep.yonsei.ac.kr

Contents

Motivation

Belle and KEKB

Hadronic tagging method

Sample used for analysis

Event selection

Optimization

Preliminary result

Calibration in E_{ECL} sideband

Summary

Motivation

- X : invisible, neutral, massive, spin 1/2 particle
- We search for X in the mass range of 0.1 1.8 GeV/ c^2
- World first try-out

Belle and KEKB

Data collected with Belle detector at KEKB asymmetric e^+e^- collider e^+ : 3.5 GeV Total of 711 fb⁻¹ of data collected at Y(4S) e^- : 8.0 GeV

→ 772M BB pairs

Belle and KEKB

Data collected with Belle detector at KEKB asymmetric e^+e^- collider e^+ : 3.5 GeV Total of 711 fb⁻¹ of data collected at Y(4S) e^- : 8.0 GeV

→ 772M BB pairs

Integrated luminosity of B factories

Hadronic tagging method

- e+e- collision at Y(4S) energy → ¾ are continuum backgrounds
- By requiring completely reconstructed B meson at one side

→ Continuum suppression

Hadronic tagging method

>96% of Y(4S) \rightarrow BB with nothing else produced

one B-meson is completely reconstructed from known b \rightarrow c decays without v efficiency is low, but purity is high

Good way to reconstruct modes with invisible particle

Sample used for analysis

Data ; 711fb⁻¹ at Y(4S) resonance \rightarrow 772 Millions of B meson pairs

Signal MC

mode	Mass of X	Amount
$B^{\scriptscriptstyle +} \xrightarrow{} e^{\scriptscriptstyle +} \; X$	0.1, 0.2, 1.8 GeV	2,000,000 events for each mass of X
$B^+ \rightarrow \mu^+ X$	0.1, 0.2, 1.8 GeV	2,000,000 events for each mass of X

	Mode	Process	Amount
	Generic MC	BB, qq	5 streams
	RareB	b \rightarrow s, d, leptonic	50 streams
Background MC	Ulnu	$B \rightarrow X_u l v$	20 streams
Г	ενγ	$B^+ \rightarrow e \nu \gamma$	1000 streams
	μνγ	Β⁺ → μνγ	1000 streams
Separately	$\pi^{+}K^{0}$	$B^+ \rightarrow \pi^+ K^0$	500 streams
generated!	π ⁰ eν	$B^+ \rightarrow \pi^0 e \nu$	300 streams
	$\pi^0\mu\nu$	$B^+ \rightarrow \pi^0 \mu \nu$	300 streams

Event selection

Particle Identity	Track quality		Continuu	m s	uppressio	n	
L _e > 0.9	Dz < 2 cm		cosθ _{thrust}	< (0.9 for B+	\rightarrow	e+ X
L _µ > 0.9	Dr < 0.5 cm		$ \cos\theta_{thrust} < 0.8$ for $B^+ \rightarrow \mu^+ X$			μ+ X	
E _{FCL}							
Quality of tagge	d-B meson	1.	0				
ΔE < 0.05 GeV			E _{ECI}	Sid	eband		
$M_{bc} > 5.27 \text{ GeV/c}^2$		0.	.5 p _l ^B		Blinded		
$O_{NB} > e^{-6}$		(sideband		Region		>
			1.8	2.3		3.0	p _l ^B (GeV/c)

E_{ECL} : Remaining energy of ECL calorimeter (tagged-B & signal lepton)

p_I^B : signal lepton's momentum in the signal B rest frame

Event selection

Optimization (obtaining Yield)

Optimization

Mean of upper limit of branching fraction based on MC for each p₁^B creteria

Preliminary result

Calibration in E_{ECL} sideband

There are some disagreement between Data and MC, about $p_1^B > 2.2$ GeV/c for E_{ECL} sideband region(0.5 < E_{ECL} < 1.0 GeV).

→ Get Calibration Factor !!

Calibration in E_{ECL} sideband

E_{ECL} cut : 0.5 < E_{ECL} < 2.0 GeV (Because we want more statistics)

Data/MC ratio is fitted to linear function

Ratio function : $R(p_1^B) = p_0 + p_1 \times (p_1^B - 1.8)$

when p_0 and p_1 is parameter

To fit well, we apply error to bins where no events (but MC exist)

Calibration in E_{ECL} sideband

Originally we use Data & MC ratio in p_I^B sideband region to scale expectation of BG

So we use this ratio fitting function to scale BG expectation.

Calibration factor R* is used for scaling.

We use ratio fitting function when fitting range 1.8 < p_1^B < 2.65 GeV/c

Old:
$$BG_{est} = Data_{side} \times \frac{S(MC)_{sig}}{S(MC)_{side}}$$

New :
$$BG_{est} = R * \times Data_{side} \times \frac{S(MC)_{sig}}{S(MC)_{side}}$$

Summary

* We search for $B^+ \rightarrow I^+ X$, where X can be any invisible (and possibly massive) spin-1/2 particle.

* We successfully suppressed background by help of hadronic tagging method.

* In preliminary results, the upper limits are $O(10^{-6})$

* Recently, estimated background is calibrated by difference between Data and MC in E_{ECL} sideband.

Thank you for listening!

BACK UP

Skim procedure

SKIM PATH

Hadronic Tagging \rightarrow LX_SKIM \rightarrow ANALYSIS_CODE

LX_SKIM

✤ 1 charged particle not used in Full_recon \rightarrow call it 'c'

- ↔ (Charge of c) x (Charge of tagged B) = -1
- ✤ Momentum of c(LAB frame) >1.0 GeV

p_{I}^{B} sideband ($B^{+} \rightarrow e^{+} X$)

p_{I}^{B} sideband ($B^{+} \rightarrow \mu^{+} X$)

Fitting PDFs (MC)

- 1D ML fit for p_1^B was done (1.8~3.0 GeV/c)
- Cuts for all remaining variables are same
- Using simple function as much as possible

Some modes in Ulnu are scaled

Mode	Branching Fraction		Scale factor
	Belle MC	PDG	
$\rho l \nu$	$1.49 imes 10^{-4}$	$1.07 imes 10^{-4}$	0.7181
$\eta l \nu$	8.4×10^{-5}	$3.9 imes10^{-5}$	0.4643
$\eta' l \nu$	$3.3 imes10^{-5}$	$2.3 imes 10^{-5}$	0.6970

$B^+ \rightarrow e^+ X Background PDF$

$B^+ \rightarrow \mu^+ X$ Background PDF

 $P_{1}^{B}, \pi K^{0}, \mu$

2.6

Signal PDF

High1-2014 KIAS-NCTS Joint workshop

Optimization

Control of variables to be optimized

p_{I}^{B} high cut → move(0.01 GeV level) p_{I}^{B} low cut → move(0.01 GeV level) Remain cut → fixed

We give 1,000 values have Poisson distribution for estimated BG These values are chosen for Yields Yield > 6 cases are ignored (too high U.L. can disturb mean)

16.0% uncertainty of signal efficiency assumed We don't need to consider E_{ECL} contribution to p_1^B distribution $BG_{est} > 3.0$ case not considered

Optimization

e mode	plB cut(GeV/c)	BG_est
0.1(GeV)	2.52 <plb<2.70< td=""><td>0.442</td></plb<2.70<>	0.442
0.2	2.52 <plb<2.70< td=""><td>0.442</td></plb<2.70<>	0.442
0.3	2.55 <plb<2.68< td=""><td>0.282</td></plb<2.68<>	0.282
0.4	2.55 <plb<2.68< td=""><td>0.282</td></plb<2.68<>	0.282
0.5	2.52 <plb<2.70< td=""><td>0.442</td></plb<2.70<>	0.442
0.6	2.52 <plb<2.70< td=""><td>0.442</td></plb<2.70<>	0.442
0.7	2.52 <plb<2.70< td=""><td>0.442</td></plb<2.70<>	0.442
0.8	2.51 <plb<2.62< td=""><td>0.436</td></plb<2.62<>	0.436
0.9	2.51 <plb<2.62< td=""><td>0.436</td></plb<2.62<>	0.436
1.0	2.51 <plb<2.62< td=""><td>0.436</td></plb<2.62<>	0.436
1.1	2.47 <plb<2.57< td=""><td>0.615</td></plb<2.57<>	0.615
1.2	2.45 <plb<2.53< td=""><td>0.636</td></plb<2.53<>	0.636
1.3	2.43 <plb<2.51< td=""><td>0.738</td></plb<2.51<>	0.738
1.4	2.41 <plb<2.51< td=""><td>0.985</td></plb<2.51<>	0.985
1.5	2.39 <plb<2.46< td=""><td>0.843</td></plb<2.46<>	0.843
1.6	2.37 <plb<2.43< td=""><td>0.816</td></plb<2.43<>	0.816
1.7	2.34 <plb<2.39< td=""><td>0.805</td></plb<2.39<>	0.805
1.8	2.31 <plb<2.36< td=""><td>0.941</td></plb<2.36<>	0.941

μ mode	plB cut(GeV/c)	BG_est
0.1(GeV)	2.58 <plb<2.68< td=""><td>0.439</td></plb<2.68<>	0.439
0.2	2.58 <plb<2.68< td=""><td>0.439</td></plb<2.68<>	0.439
0.3	2.58 <plb<2.68< td=""><td>0.439</td></plb<2.68<>	0.439
0.4	2.58 <plb<2.68< td=""><td>0.439</td></plb<2.68<>	0.439
0.5	2.58 <plb<2.68< td=""><td>0.439</td></plb<2.68<>	0.439
0.6	2.58 <plb<2.68< td=""><td>0.439</td></plb<2.68<>	0.439
0.7	2.56 <plb<2.63< td=""><td>0.462</td></plb<2.63<>	0.462
0.8	2.54 <plb<2.61< td=""><td>0.485</td></plb<2.61<>	0.485
0.9	2.52 <plb<2.60< td=""><td>0.605</td></plb<2.60<>	0.605
1.0	2.49 <plb<2.58< td=""><td>0.838</td></plb<2.58<>	0.838
1.1	2.49 <plb<2.58< td=""><td>0.838</td></plb<2.58<>	0.838
1.2	2.48 <plb<2.53< td=""><td>0.594</td></plb<2.53<>	0.594
1.3	2.45 <plb<2.50< td=""><td>0.731</td></plb<2.50<>	0.731
1.4	2.42 <plb<2.48< td=""><td>0.994</td></plb<2.48<>	0.994
1.5	2.40 <plb<2.47< td=""><td>1.233</td></plb<2.47<>	1.233
1.6	2.37 <plb<2.42< td=""><td>1.025</td></plb<2.42<>	1.025
1.7	2.34 <plb<2.39< td=""><td>1.164</td></plb<2.39<>	1.164
1.8	2.31 <plb<2.37< td=""><td>1.574</td></plb<2.37<>	1.574

Expectation of Branching Fraction

Summary Table ($B^+ \rightarrow e^+ X$)

M(X)	plB cut	BG_est	Efficiency(‰)	Observed event	U.L. (10^{-6})
0.1 (GeV)	2.52 < plB < 2.70	0.442±0.201	1.13±0.14	0	2.41
0.2	2.52 < plB < 2.70	0.442±0.201	1.12 ± 0.14	0	2.43
0.3	2.55 < plB < 2.68	0.282±0.134	1.08±0.13	0	2.70
0.4	2.55 < plB < 2.68	0.282±0.134	1.06±0.13	0	2.75
0.5	2.52 < plB < 2.70	0.442±0.201	1.08±0.13	0	2.52
0.6	2.52 < plB < 2.70	0.442±0.201	1.07±0.13	0	2.54
0.7	2.52 < plB < 2.70	0.442±0.201	1.11 ± 0.14	0	2.45
0.8	2.51 < plB < 2.62	0.436±0.190	1.07±0.13	0	2.54
0.9	2.51 < plB < 2.62	0.436±0.190	1.01±0.13	0	2.69
1.0	2.51 < plB < 2.62	0.436±0.190	0.97±0.12	0	2.81
1.1	2.47 < plB < 2.57	0.615±0.251	0.99±0.12	0	2.54
1.2	2.45 < plB < 2.53	0.636±0.257	0.97±0.12	0	2.57
1.3	2.43 < plB < 2.51	0.738±0.303	0.98±0.12	0	2.45
1.4	2.41 < plB < 2.51	0.985±0.410	1.02±0.12	0	2.15
1.5	2.39 < plB < 2.46	0.843±0.374	0.95±0.12	1	4.80
1.6	2.37 < plB < 2.43	0.816±0.380	0.94±0.11	1	4.88
1.7	2.34 < plB < 2.39	0.805±0.389	0.89±0.11	1	5.17
1.8	2.31 < plB < 2.36	0.941±0.455	0.90 ± 0.11	2	7.10

Summary Table ($B^+ \rightarrow \mu^+ X$)

M(X)	plB cut	BG_est	Efficiency(‰)	Observed event	U.L. (10^{-6})
0.1 (GeV)	2.58 < plB < 2.68	0.439 ± 0.111	1.18 ± 0.14	1	4.26
0.2	2.58 < plB < 2.68	0.439±0.111	1.19 ± 0.15	1	4.23
0.3	2.58 < plB < 2.68	0.439±0.111	1.18 ± 0.14	1	4.26
0.4	2.58 < plB < 2.68	0.439±0.111	1.19 ± 0.15	1	4.34
0.5	2.58 < plB < 2.68	0.439±0.111	1.15 ± 0.14	1	4.37
0.6	2.58 < plB < 2.68	0.439±0.111	1.13±0.14	1	4.45
0.7	2.56 < plB < 2.63	0.462±0.116	1.13±0.14	0	2.35
0.8	2.54 < plB < 2.61	0.485±0.140	1.14 ± 0.14	1	4.37
0.9	2.52 < plB < 2.60	0.605±0.187	1.14 ± 0.14	1	4.23
1.0	2.49 < plB < 2.58	0.838±0.270	1.13±0.14	1	4.04
1.1	2.49 < plB < 2.58	0.838±0.270	1.18 ± 0.14	1	3.87
1.2	2.48 < plB < 2.53	0.594±0.194	1.06±0.13	0	2.37
1.3	2.45 < plB < 2.50	0.731±0.233	1.03±0.13	0	2.28
1.4	2.42 < plB < 2.48	0.994±0.307	1.10 ± 0.13	2	5.75
1.5	2.40 < plB < 2.47	1.233±0.371	1.11 ± 0.14	5	10.64
1.6	2.37 < plB < 2.42	1.025±0.287	1.05±0.13	4	9.66
1.7	2.34 < plB < 2.39	1.164±0.308	1.05±0.13	1	3.93
1.8	2.31 < plB < 2.37	1.574±0.402	1.12 ± 0.14	1	3.27

Recent progress

Lifetime acceptance of X

We suppose that X have no experimental signature. Also, we set X is not decaying particle.

X should pass ECL(CsI) calorimeter with no decay.

 $\gamma\beta$ ct = (p/m)ct > 2716mm (in Lab frame)

So, we study for X to have lifetime more than 1.43×10^{-8} sec case.

M(X)	p_{X}^{Lab}	Lifetime
0.1	1.633	5.55 × 10 ⁻¹⁰
0.2	1.629	1.11×10^{-9}
0.3	1.621	1.68×10^{-9}
0.4	1.610	2.25 × 10 ⁻⁹
0.5	1.597	2.84 × 10 ⁻⁹
0.6	1.580	3.44 × 10 ⁻⁹
0.7	1.560	4.07 × 10 ⁻⁹
0.8	1.537	4.72 × 10 ⁻⁹
0.9	1.511	5.40 × 10 ⁻⁹
1.0	1.482	6.11 × 10 ⁻⁹
1.1	1.450	6.87 × 10 ⁻⁹
1.2	1.415	7.68 × 10 ⁻⁹
1.3	1.376	8.56 × 10 ⁻⁹
1.4	1.335	9.50 × 10 ⁻⁹
1.5	1.291	1.05×10^{-8}
1.6	1.243	1.17×10^{-8}
1.7	1.193	1.29×10^{-8}
1.8	1.139	1.43 × 10 ⁻⁸

Recent progress

Compare Data & MC in E_{ECL} sideband region

Trial for understanding E_{ECL} sideband

From last BAM,

we try 3 kinds of approaching method to understand data events for E_{ecl} Sideband region with high p_l^B.

1 : We use lepton's momentum in LAB frame. And draw their Phi & Theta value.

- 2 : We suppose they are from QED background like $e^+e^- \rightarrow \tau^+\tau^-$
- 3 : We give off-timing cut for data & 911-veto for MC, and look whether there are any better agreement.